THEODORE ROOSEVELT NATIONAL PARK

ND PRA THRO 11(5)

PAVEMENTS REPORT REPORT #11-01

SIGNATURE SHEET

Report prepared by: Danielle Meuman
Danielle Germani, Pavements Engineer
•
Report reviewed by: Steve Deppmeier, Pavements Engineer
Report reviewed by: Ron Andresen, Staff Materials Engineer
Approved for distribution by:
Chuck Luedders, Division Pavements Engineer
March 24, 20//

Distribution
Project Management
Project Development (3)
Construction (2)
CFLHD, Central Files
CFLHD, Report Room
Pavements (2)
Materials Materials

TABLE OF CONTENTS

REC	DMMENDED PAVEMENT TYPICAL STRUCTURAL SECTION	1
I.	INTRODUCTION	1
II.	EXISTING CLIMATE, PAVEMENT AND SUBGRADE CONDITIONS	2
III.	FIELD INVESTIGATION.	5
IV.	TEST RESULTS	6
V.	PAVEMENT RECOMMENDATIONS & DISCUSSIONS	8
VI.	MATERIALS RECOMMENDATIONS	10
APPE	ENDICES	12
B C D E F G	- SITE MAP - FIELD INVESTIGATION AND TESTING SUMMARIES - LABORATORY TEST RESULTS - PHOTOGRAPHS (SOUTH LOOP ROAD) - PHOTOGRAPS (BUCK HILL SPUR) - VISUAL CLASSIFICATION SUMMARY - PAVEMENT DESIGN CALCULATIONS - PRICE ESTIMATIONS AND ASSUMPTIONS	
Ι-	– PRELIMINARY PAVEMENTS MEMO	

RECOMMENDED PAVEMENT TYPICAL STRUCTURAL SECTION

Option 1: **SOUTH LOOP ROAD**3.5 inches HACP
7 inches FDR - Stabilization

I. INTRODUCTION AND BACKGROUND

This report presents pavements recommendations for ND PRA THRO 11(5) South Loop Road in Theodore Roosevelt National Park. The report addresses recommendations, findings, analysis, and discussions regarding:

- Pavement alternatives
- Existing pavement and subgrade conditions
- Field investigations
- Laboratory analysis

The project covers a length of 10.67 miles of South Loop Road, beginning at the Medora park entrance and continuing north. This report also includes a pavement recommendation for Buck Hill Spur, which is located off of South Loop Road near milepost (MP) 17. Figure 1 below provides a location map. Appendix A shows a larger site map. Buck Hill Spur may or may not be part of ND PRA THRO 11(5).

South Loop Road is also known as Scenic Loop Road (Route 11) in the Road Inventory Program (RIP) data, South Unit Loop Road on the project schedule, and is labeled as East River Road on most maps. For this memo South Loop Road will be used. Buck Hill Spur is also known as Buck Hill on most maps.

Figure 1. Project Location Map. Shows the mileposts where the project starts and stops and Buck Hill Spur.

The mileposts begin 0.0 at the Medora Visitor Center and proceed north to milepost 6.55/28.5 at the southern intersection of South Loop Road and Scenic Loop Drive. The mileposts continue counterclockwise along the loop to milepost 25.0 at the northern intersection of South Loop Road and Scenic Loop Drive. The mileposts then continue south along South Loop Road back to milepost 28.5/6.55 at the southern intersection of South Loop Road and Scenic Loop Drive. Figure 1 above and Appendix A show the labeled mileposts along the road.

A 1993 pavements report by Samual Holder for South Loop Road contains pavement, base, subgrade classifications and R-Values from milepost 0.0 to 6.55. A field investigation was performed on December 1st by Central Federal Lands to record pavement conditions and gather samples from milepost RIP MP 28.5 to 25.0. The 1993 pavements report was used during this investigation to determine the change in pavement thickness over the years as well as previous pavement design types applied to the road.

II. EXISTING PAVEMENT AND SUBGRADE CONDITIONS

South Loop Road

The existing roadway is an average of 20.5-feet wide with 3-foot paved ditches and asphalt curbs at various locations. The existing asphalt pavement is highly distressed throughout the entire length of the project. The main distress apparent is thermal cracking, spaced approximately every 20 to 30 feet, due to low temperature cracking. Several locations in the roadway mainline show rutting. These areas may require subexcavation. Large dips were also found, possibly due to poorly compacted or collapsing culverts under the roadway.

Records show that South Loop Road was last chip sealed in 1997. Patching is found in multiple areas over the chip seal. Existing pavement thickness varies from 4.5 inches to 7.5 inches on the mainline. The existing pavement thickness is 3.0 inches in Wind Canyon and Jones Creek pullouts. This indicates an additional 1-inch of added asphalt from the overlapping 1993 data. The additional patching and possible overlay may be the cause of this. The aggregate base material varies in thickness from 5.5-inches to 7.0-inches. Table 1 below shows pavement, base, and subgrade thicknesses from both the field investigation and the 1993 pavements report. Figure 2 shows the existing pavement thickness along the mainline of South Loop Road. Fabric existed from RIP MP 28.5 to 25.0.

Figure 2. Pavement Thickness. MP 25.4 Rt. South Loop Road, B-1, Pavement thickness at a dip in the road.

Table 1. Thicknesses for pavement, base, and subgrade from 1993 investigation and 2010 investigation

ND PRA THRO 11(5) Recorded Thicknesses									
Location (M.P.)*	Boring	Side	Asphalt Pavement (1993)	Asphalt Pavement (2010)	Fabric	Base Course	HACP + Base		
0.5	B1	Rt	4.5"	-		4.5"	9"		
1.0	B2	Rt	5"	-		4"	9"		
1.5	В3	Rt	9"	-		3"	12"		
2.0	B4	Rt	6.5"	-		1.5"	8"		
2.5	B5	Rt	6"	-		3"	9"		
3.0	В6	Rt	9"	-			9"		
3.5	B7	Rt	5.5"			2.5"	8"		
4.0	B8	Rt	7"	-		-	7"		
4.5	В9	Rt	7.5"			3"	10.5"		
5.0	B10	Rt	7"			1.5"	8.5"		
5.5	B11	Rt	5.5"	-		4.5"	10"		
6.0	B12	Rt	7.5"	-		1.5"	9"		
6.5	B13	Rt	6.5"	-		2.5"	9"		
25.4	B1	Rt	12"	4.5"	Yes	11"	15.5"		
26.1	B2	Lt	4.5"	5.5"	Yes	5.5"	11"		
26.2	В3	Rt	4.5"	5.5"		5"	10.5"		
27.0	B4	Lt	5.5"	6.5"	Yes	5"	11.5"		
27.5	B5	Rt	7.5"	7.5"	Yes	7"	14.5"		
27.9	В6	Lt	5"	6.5"	Yes	6.5"	13"		
28.6	В7	Rt	2"	4.5"	Yes	5"	9.5"		
6.0	В8	Rt	7	7.5"	Yes	4.5"	12"		
Wind Canyon Pullout	P1	-	-	3"		9"	12"		
Jones Creek Pullout	P2	-		6.5"		0"	6.5"		
Average									

^{*} Mileposts scaled with site map. Mileposts in this table may vary from actual field mileposts.

Buck Hill Spur

The existing roadway is 0.73 miles long with an average width of 25.5-feet with 4-foot paved ditches and asphalt curb. The existing asphalt pavement is highly distressed throughout the entire length of the project. Loose aggregate is found in many areas where drainage is a problem.

The existing pavement thickness averages 3-inches on the mainline, although in some areas the pavement thickness is less than 1-inch. A culvert at milepost 0.1 collects runoff from an existing natural slope. The water drains across the road causing damage to the roads surface. From milepost 0.4 to 0.5 a large dip in the road is causing water to puddle on a regular basis making the road only accessible to 4-wheel drive vehicles. The asphalt has been stripped away in this area. Photographs of the culverts can be found in Appendix E.

^{**} Average asphalt pavement depth of entire project

The scoria base material varies in thickness from 12 to 23-inches. Table 2 below shows pavement and scoria base thickness from the field investigation.

Table 2. Thicknesses	or pavement and scoria	a base from the investigation.
----------------------	------------------------	--------------------------------

ND PRA THRO 11(5) Recorded Thicknesses								
Location (M.P.)	Boring	Asphalt Pavemen	Scoria Base	HACP + Base				
0.4	0.4 B1		12"	12"				
0.5	B2	3"	20"	23"				

III. FIELD INVESTIGATIONS (2010)

South Loop Road

On December 1, 2010, a two person crew from Braun Intertec was contracted to drill borings using a CME 75 truck-mounted drill rig. Drilling started on the north end where Scenic Loop Drive and South Loop Road intersect at milepost 25.5 and continued south to milepost 28.5. Snow and ice patches were on the roadway.

Pavement, base, and subgrade samples were collected for laboratory testing to determine R-Values, gradations, and soil classifications. Six 1-foot borings holes were drilled to determine pavement and base thicknesses. Two of those boring holes were drilled in Wind Canyon Pullout and Jones Creek Pullout. Four 5-foot boring holes were also drilled to determine pavement, base, and subgrade thicknesses. All boring hole locations were determined by FHWA and were chosen based off of visual areas of distress. The field investigation log for this site visit is in Table 2 in Appendix B at the back of this report. Figure 3 below shows photographs of the base material found during the investigation. Figure 4 shows photographs of the subgrade material found. Additional photographs of the boring holes and soils found can also be found in Appendix D.

Figure 3. Base Material. Jones Creek Pullout, P-2, Base material.

Figure 4. Subgrade Material. MP 26.2 Rt. South Loop Road, B-3, Subgrade material.

Buck Hill Spur

Pavement, base, and subgrade samples were collected for laboratory testing to determine R-Values, gradations, and soil classifications. The first sample was at milepost 0.4 where a large dip can be seen in the roadway. The second boring hole was drilled at milepost 0.5 just above where rippling can be seen in the roadway. The field investigation log for this site visit is in Table 2 in Appendix B at the back of this report. Additional photographs of the boring holes and soils found can also be found in Appendix E.

IV. TEST RESULTS

South Loop Road

Samples were tested for soil classification, R-Values, and pH levels. No base course was collected from milepost 0.0 to 6.5. The base course mostly consists of silty clayey sands from RIP MP 28.5 to 25.0. From RIP MP 28.5 to 25.0, the subgrade material consists of sandy clay and the R-Values range from <5 to 16. These R-values are much lower than the R-values recorded from milepost 0.0 to 6.5 in the 1993 pavements report, which range from 65 to 79. The subgrade samples collected in 1993 might have consisted of a base-subgrade mixture resulting in higher R-Values. The boring depths from the 1993 report are much lower, ranging from 7 to 12 inches. In the 2010 investigation, boring holes were drilled to a depth of 60 inches. The subgrade was also tested for hot soils resulting in a pH of 6.8 and a resistivity of 418 ohm x cm. Table 3 below provides the soils classifications, R-Values and plasticity index for the subgrade material.

Table 3. Classification, R-Values, and plasticity index for the subgrade.

ND PRA THRO 11(5) Recorded Thicknesses							
	NDPR	ATH	KO 11(5) RE	corded Inickn	esses		
Location (M.P.)*	Boring	Side	Sample Depth	AASHTO Classification	R-Value (1993)	R-Value (2010)	Plasticity Index
0.5	B1	Rt	9" - 1' 6"	A-2-4 (0)	79	-	NP
1.0	B2	Rt			-	-	
1.5	В3	Rt			121	-	
2.0	B4	Rt	8" - 1' 10"	A-2-4 (0)	65	-	6
2.5	B5	Rt			-	-	
3.0	В6	Rt			-		
3.5	В7	Rt	8" - 1' 8"	A-1-b (0)	76	-	NP
4.0	B8	Rt			-	-	
4.5	В9	Rt			-	-	
5.0	B10	Rt	8.5" - 1' 8"	A-2-4 (0)	69	-	6
5.5	B11	Rt			-	-	
6.0	B12	Rt			-	-	
6.5	B13	Rt	9" - 2' 1"	A-2-4 (0)	60**	-	7
6.0	В8	Rt			-	-	
28.6	В7	Rt	9.5" - 5'	A-6 (13)	-	8	21
27.9	В6	Lt	13" - 5'	A-6 (16)	-	<5	19
27.5	B5	Rt			-	-	
27.0	B4	Lt			-	-	
26.2	В3	Rt	10.5" - 5'	A-6 (21)	-	11	22
26.1	B2	Lt			-	-	
25.4	B1	Rt	15.5" - 5'	A-6 (14)	-	16	19
Wind Canyon Pullout	P1				-	-	
Jones Creek Pullout	P2	-			12	-	

^{*} Mileposts scaled with site map. Mileposts in this table may vary from actual field mileposts.

Since the R-Values for the subgrade material were so low, combinations of the base and HACP were tested to try and raise the Structural Number (SN) and create a more stable and cost efficient structure. Four combinations were combined and tested for R-Values. The combinations consisted of 0% RAP and 100% base, 25% RAP and 75% base, 50% RAP and 50% base, and 75% RAP and 25% base. Table 4 below shows the R-Values for each of the combinations.

Table 4. R-Values for combinations of RAP and base material.

Combination % RAP / % Base	R-Value
0/100	58
25 / 75	60
50 / 50	76
75 / 25	77

^{**} Did not use value in R-Value calculation. Milepost 28.6 and 6.55 are at the same location. Used R-value of 8 at this location.

Using the results from the field investigation and previous pavements report on South Loop Road, it was determined that a 7-inch FDR – Stabilization with 5% Fly Ash or 3% Lime and 3.5-inches of new HACP overlay would be the recommended pavement design.

Buck Hill Spur

The Buck Hill Spur samples were also tested for soil classification and R-Values. Base course mostly consisted of scoria base. The subgrade material consisted of clays. The subgrade material has an R-Value of <5, a pH of 7.3, and a resistivity value of 340 ohm x cm.

It was determined that 4-inches of FDR – Stabilization with 5% Fly Ash or 3% Lime, 2-inches of aggregate base material, and 3.5-inches of new HACP overlay would be the recommended pavement design. Theodore Roosevelt has natural silty clay soils and months of snow and cold weather making a thick stable base essential for lasting pavement.

V. PAVEMENT RECOMMENDATIONS & DISCUSSIONS

South Loop Road

The average daily traffic for South Loop Road was calculated by using park traffic data for the Medora entrance station from 1992 through 2010. The growth rate was calculated to be 1% and the amount of traffic was projected out to 2030. During the field investigation fabric was found from RIP MP 28.5 to 25.0; however it is anticipated that the pulverizer will be able to tear through the fabric. Production time may slow for periodic removal of fabric from the road reclaimers teeth.

The required design Structural Number (SN) on the subgrade material is 2.72. The average existing HACP, existing base course, and existing HACP- base course combination thickness is 6-inches, 3.5-inches, and 10-inches respectively. Below shows two options with Option 1 as the recommended option.

Option 1: RECOMMENDED

3.5 inches HACP
7 inches FDR - Stabilization
SN = 2.73
Cost Estimate (5% Fly Ash) = \$327,649 per mile, paving cost only
Cost Estimate (3% Lime) = \$324,284 per mile, paving cost only

Option 2:

4 inches HACP 7 inches FDR - Pulverize SN = 2.74 Cost Estimate = \$328,247 per mile, paving cost only

The recommended pavement rehabilitation is 7-inches of Full Depth Reclamation (FDR) - stabilization with either 5% Fly Ash or 3% Lime with 3.5-inches of new Hot Asphalt Concrete Pavement (HACP) overlay. This recommendation is based on traffic information,

potential loadings, existing pavement, and soil conditions. This method will provide better bridging over the clayey soils that are found in this area. This method also provides better constructability and results in a lower grade. The complete cost estimation is in Appendix H. The recommendation and cost estimate is for mainline only and does not include pullouts, parking areas, or paved ditches.

It is important to note that the borings were between a quarter and half a mile apart, as a result discrepancies between the report and actual field thickness could occur.

Buck Hill Spur

The calculated and required design structural number (SN) based on the above material is 2.72. Two options are recommended, a 3R option and a 4R option. The 3R option will only be used if Buck Hill Spur is incorporated with ND PRA THRO 11(5) or if recycling is allowed for a standalone project. The recommended options for Buck Hill Spur are shown below.

3R Option

3.5 inches HACP

2 inches Aggregate Base Course

4 inches FDR-Stabilization

SN = 2.74

Cost Estimate (5% Fly Ash) = \$463,834 per mile, paving cost only Cost Estimate (3% Lime) = \$460,247 per mile, paving cost only

4R Option

4 inches HACP

7 inches Aggregate Base Course

SN = 2.72

Cost Estimate = \$551,338 per mile, paving cost only

The recommended 3R pavement rehabilitation is 4-inches of FDR-stabilization with either 5% Fly Ash or 3% Lime, 2 inches of aggregate base course, and 3.5-inches of new HACP. This recommendation is based on traffic information, potential loadings, public access, existing pavement, subgrade, and soil conditions.

The recommended 4R pavement rehabilitation is 7-inches of aggregate base course, and 4-inches of new HACP.

The existing base material is scoria with an R-Value of less than 5. It is recommended that 2-inches of new base be brought in and placed along the roadway. The contractor may choose to pulverize and recycle the existing roadway. The recycled material should be used as the bottom 4-inches of base course. If the existing pavement is recycled base material, it should conform to section 303.08 in the SCRs. Pulverized material may not be hauled out of the park. The complete cost estimation is in Appendix G.

A large dip in the road at approximately milepost 0.4 to 0.5 is causing drainage issues and will need to be filled with unclassified borrow of A-2-4 material or better. It will take approximately 7,800 ft³ of material to raise the dip. This is based off of a 5-foot depth, 25-foot width, and 125-foot length. This quantity was based on visual approximations and was not actually measured. To solve this it is recommended that 5' of full width subexcavation be done. Install geogrid at a 2-foot spacing, with the first layer at the bottom, for a total of 3 layers. Install geosynthetic separation material Type IV-F between the natural existing clay material and the aggregate base course. Construct roadway with a 2% slope to allow water to drain to shoulder and or edge drain. It is also recommended that a possible culvert or under drain be installed in that area. This base quantity and cost estimate does take into account this quantity. Hydraulics and Geotech will need to look into the issue further.

VII. MATERIALS RECOMMENDATIONS

Drainage, Subexcavation, and other Issues

During the field investigation of December 2010, there were no major water or drainage problems that were evident along South Loop Road; however the field investigation was performed during below freezing temperatures in December when drainage issues may not have been evident. Due to the clayey subgrade beneath South Loop Road, it will be imperative that a prime seal be placed immediately onto the pulverized base material once that material is finished to grade. The prime seal will aid, along with proper grading, in shedding rainwater. If water is allowed to penetrate through unsealed base material, the subgrade will deteriorate and subexcavation may become necessary.

Another strategy to prevent saturation of the subgrade soils and structural damage is to rewrite the 303 SCR to conform to the following limitations:

- Do not begin pulverization operations until the Superpave Pavement mix design has been submitted and approved by the CO.
- Pulverize the roadway in segments no greater than 2.5 lane miles at any time.
- Apply prime coat to the pulverized material within 5 work days of pulverization beginning.
- Apply the first lift of Superpave Pavement to the primed segment within 14 working days of beginning of pulverization.
- Construction equipment including hauling trucks will be required to travel as much as
 practical on paved sections and minimize the traffic loading on the pulverized
 material.

If subexcavation becomes necessary, follow the guidelines in the table below. The table is from Chapter 11 of the Project Development Design Manual (PDDM). Based on the soil classification testing it appears most of the subgrade would fall into the 2 feet depth category. To account for areas that may need to be subexcavated, 2000 tons of subexcavation should be put in the contract to be used at the discretion of the CO. If paved waterways are installed, add a 608 item to the contract.

Table 5. Subexcavation guidelines.

Plasticity Index (PI)	Liguid Limit (LL)	Depth of Subexcavation*		
15 - 25	< 50	2 feet		
25 - 35	50 - 60	2 - 4 feet		
> 35	> 60	4 - 6 feet		

^{*} Traffic volume, project significance, and results of AASHTO T 258 and T 92 should influence subexcavation depth.

Selection of Asphalt Binder

LTTPBind software indicates use of PG 58-34 at 98% reliability.

Pavement Materials

- 30305-0000 Pulverizing 7-inch depth.
- 30310-0000 Fly Ash, Estimate at 142.1 lb/ft³.
- 30311-0000 Lime, Estimate at 142.1 lb/ft³.
- 30802-2000 Roadway Aggregate, Method 2. Estimate at 139 lb/ ft³. Place 2-inches of base material at Buck Hill Spur.
- 40101-5600 Superpave Pavement, ½-inch or ¾-inch nominal maximum size aggregate, 0.3 to <3 million ESALs. Estimate at 145 lb/ft³. Asphalt cement will be PG 58-34. Type IV Roughness to be specified.
- 40105-3000 Antistrip will be Type III (Hydrated Lime at 1%).
- 40920-1000 Fog Seal, use an emulsion CSS-1, CSS-1h, SS-1, or SS-1h estimate at 0.10 gal/yd²
- 41101-3000 Prime Coat, applied to the FDR-Pulverized material prior to paving. Use and emulsion CSS-1, CSS-1h, SS-1, or SS-1h estimate at 0.33 gal/yd².
- 41106-0000 Item for blotter control should be included at 14.75 lb/ft².
- 41201-0000 Tack Coat, HACP shall be placed in two lifts with a tack coat in between lifts. Use an emulsion CSS-1, CSS-1h, SS-1, or SS-1h, estimate at 0.10 gal/yd².

APPENDIX A

SITE MAP

APPENDIX B

FIELD INVESTIGATION AND TESTING SUMMARIES

ND PRA THRO 11(5) THEODORE ROOSEVELT FIELD LOG

Cloudy, 20F. Snow and ice patches in roadway
Start at MP 25.0 at northern intersection of South Loop Road and Scenic Loop Drive looking toward higher milepost
Buck Hill - Start at intersection looking up Buck Hill Spur
Formal Cracks every 20° to 30° (Use polimerized binder 58-34 or 64-34)
Possible subex areas
chip sceled in 1997 and later did patching
CME 75 Drill Rig
*Miles plan mile posts are slightly off from mileposts on site

<u>00</u>	9 76 3 100			6 75 3 100	6 75	6 75	18 77 89 96	19 75 74 97	16 75	
P1 #200	7 19 19 83			NP 16 22 93	NP 16	NP 16	19 89 19 89	7 15 21 7	A 21	
	16 1			7 7 7	2.	2	\$33 7	00		
R-Value	ky ⊷			н			m V	~		
AASHTO M ASTM D 2487	SC-SM CL			SN CL	NS.	WS	SC-SM	SC-SM CL	S	
AASHTO M	A-2-4 (0) A-6 (14)			A-1-b (0) A-6 (21)	A-1-b (0)	A-1b (0)	A-1-b (0) A-6 (16)	A-2-4 (0) A-6 (13)	A-1-b (0)	
Photo #	last 3 in Dave's camera 1	237 - 243 in Dave's camera	2, 3, 4, 5	6, 7, 8, 9, 10, 11	12, 13, 14	15, 16, 17, 18	22, 23, 24, 25	26, 27, 28, 29	30, 31, 32	19, 20, 21
<u>Note</u>	HACP 1 Base 1 Subgrade 1 Possibe culvert (dip in roadway) Coordinates: N 46 59.3127' W 103 29.0830	HACP 1 At 25.8 chip seal with and patching Coordinates: N 46 59.3256' W 103 29.1114'	HACP 1 1993 pavements report recorded 4.5" HACP 1993 pavements report recorded 5.5" base Coordinates: N 46 58.8856' W 103 28,7156'	HACP 1 Base 2 Subgrade 2 Bore in a patch Coordinates: N 46 58.8021' W 103 28.8409'	HACP 1 Base 2 1993 pavements report recorded 5.5" HACP 1993 pavements report recorded 5" base Coordinates: N 46 58.7171' W 103 29.0524'	HACP 1 Base 2 1993 pavements report recorded 7.5" HACP 1993 pavements report recorded 7" base Coordinates: N 46 58.5648' W 103 29.5870'	HACP 1 base 3 subgrade 2 possible cut Coordinates: N 46 57.8817' W 103 29.3569'	Base 4 Subgrade 4 Coordinates: N 46 57.4578' W 103 29.9610'	Base 2	HACP 1 no recovery Coordinates: N 46 57,9876' W 103 29.2283'
Description	HACP red brown clay gravel brown clay	HACP red brown gravely sand	HACP with fabric dark brown sitly day	HACP dark brown/ med. silty clay (asphalt treated) grey clay	HACP with fabric medium brown silty gravel	HACP with fabric medium brown silty day	HACP with fabric dark brown/ med. slity gravel (asphalt treated) grey clay	HACP with fabric medium brown silty gravel dark brown silty clay	HACP with fabric medium brown gravely sand	no base
<u>제</u>	0" - 4.5" 4.5" - 15.5" 15.5" - 60"	0"-3" 3"-12"	0" - 5.5" 5.5" - 11"	0" - 5.5" 5.5" - 11.5" 11.5" - 60"	0" - 6.5" 6.5" - 11.5"	0" - 7.5" 7.5" - 14.5"	0" - 6.5" 6.5" - 13" 13" - 60"	0" - 4.5" 4.5" - 9.5" 9.5" - 60"	0" - 7.5" 7.5" -12"	0" - 6.5"
lane	#		描	¥	ب	뀶	Ħ	æ	æ	
Width (ft)	26 roadway 6 of paved ditch and gutter		20 roadway 3 of paved ditch and asphalt curb	20.5	50	20.5	20.5	20.5	21	
Boring	B1	17	B2	82	B	B	B6	87	89	P2
South Loop Road B	MP 25.4	Wind Canyon Pullout	MP 26.1	MP 26.2 (26 on site)	MP 27.0	MP 27.5	MP 27.9	MP 28.6	MP 6.0	Jones Creek Pullout

AASHTO M. ASTM D 2487 R-Value PI #200 #4	A-2-4 (0) SC 9 25 70 A-7-6 (28) CL <5 29 93 100	A-2-4 (0) SC 9 25 70
Photo #		
Note	B1 Buck Hill Rd. Subgrade Coordinates: N 46 55.8330' W 103 23.2709'	B2 Buck Hill Rd. Subgrade Coordinates: N 46 55.7634' W 103 23.2274'
Description	gravel scoria Base red brown clay	HACP scoria Base red brown clay
FOR	0" - 12"	0"-3" 3"-23"
Lane	똢	ž
Boring Width (ft) Lane Log	25 roadway 4 of paved ditch	26 roadway 4 of paved ditch
Boring	81	82
Buck Hill Spur	MP 0.4	MP 0.5

APPENDIX C

LABORATORY TEST RESULTS

Central Federal Lands Highway Division Laboratory An AASHTO and ISO Accredited Laboratory

Report of Soil or Aggregate Tests

Page 2 of 5

Project: North Dakota PRA THRO 11(5) South Loop Road (East River Road)

Submitted By: Danielle Germani

Date Reported: 1/20/2011

	Lab Numb	er	10-3848-AGG	10-3849-AGG	10-3850-AGG	10-3851-AGG	Combined
Sample Number	Hole Number		B-1	B-3, B-4 B-5, B-8	B-6	B-7	
Field Number		ber	Base 1	Base 2	Base 3	Base 4	
Sample Location	East River Road Milepost And Offset		25.4 Right	26.2 Right 27.0 Left 27.5 Right 29.0 Right	27.9 Left	28.6 Right	
	Depth		4.5" -15.5"	Varies	6.5"-13"	4.5"-9.5"	
	1"	25.0 mm			100		
AASHTO	3/4"	19.0 mm	100	100	98	100	100
T 11, T 27	1/2"	12.5 mm	96	97	95	95	96
& T 88	3/8"	9.5 mm	91	92	91	90	91
	#4	4.75 mm	76	75	77	75	76
Washed	#8	2.36 mm	63	62	64	65	64
Sieve	#10	2.00 mm	60	59	61	62	61
Analysis	#16	1.18 mm		N			
% Passing	#30	600 µm	40	39	39	42	40
	#40	425 µm	35	33	34	37	35
	#50	300 µm	32	29	30	33	31
	#200	75 µm	19	16	18	19	18
		20 µm					
		2 µm					
		1 µm					, , , , , , , , , , , , , , , , , , , ,
AASHTO T 255	Moisture, 9	6		<u>. </u>			
AASHTO	Liquid Limi	t	22	NV	21	22	22
T 89 & T 90	Plasticity Ir	ndex	7	NP	6	7	7
Soil	AASHTO N	/I 145	A-2-4 (0)	A-1-b (0)	A-1-b (0)	A-2-4 (0)	A-2-4 (0)
Classification	ASTM D 24	487	SC-SM	SM	SC-SM	SC-SM	SC-SM
AASHTO T 190	R – Value		53		33		
AASHTO T 288	Min. Resistivi	ty, ohm x cm					
AASHTO T 289	pН						
AASHTO Method	Optimum Moi Maximum Ory						
	washing Oly	certaity, por					

Distribution:

Num. / Project File

Laboratory

Darrell Harding

Pavements

Pavements

Danielle Germani Steve Deppmeier

Materials

Mike Peabody

Remarks: The combined base course gradation is a mathematical blend of the 4 base samples.

The liquid limit and plasticity index is from testing the actual blend.

Reported By:

Darrell Harding Laboratory Manager

Form FHWA 1702 Rev. 02/10

Central Federal Lands Highway Division Laboratory An AASHTO and ISO Accredited Laboratory

Report of Soil or Aggregate Tests

Page 1 of 5

Project: North Dakota PRA THRO 11(5) South Loop Road (East River Road)

Submitted By: Danielle Germani

Date Reported: 1/20/2011

	Lab Numb	er	10-3841-RV	10-3842-RV	10-3843-AGG	10-3844-AGG	
Sample Number	Hole Numl	ber	B-1	B-3	B-6	8-7	
Number	Field Num	ber	Subgrade 1	Subgrade 2	Subgrade 3	Subgrade 4	
	East River Ro	oad - Milepost	25,4	26.2	27.9	28.6	
Sample	Offset		Right	Right	Left	Right	
Location	Depth		15.5"-5'	10.5"-5'	13"-5'	9.5"-5'	· · · · · · · · · · · · · · · · · · ·
	3 ⁿ	75.0 mm				Tolk control of the second of	
	1 1/2"	37.5 mm					· · · · · · · · · · · · · · · · · · ·
	1"	25.0 mm					
	3/4"	19.0 mm					
AASHTO	1/2"	12.5 mm	_			100	
T 11, T 27	3/8"	9.5 mm			100	99	
& T 88	#4	4.75 mm	100	100	96	97	
	#8	2.36 mm					
Washed	#10	2.00 mm	97	99	95	94	
Sieve	#16	1.18 mm	96	98	95	91	
Analysis	#30	600 µm					
% Passing	#40	425 µm	94	97	93	87	
	#50	300 µm					
	#100	150 µm	91	96	92	84	
	#200	75 µm	83	93	89	74	
		20 µm					
		2 µm					
		1 µm					
AASHTO T 255	Moisture, %	6					
AASHTO	Liquid Limi	t	34	39	34	35	
T 89 & T 90	Plasticity In	ndex	19	22	19	21	
Soil	AASHTO N	/I 145	A-6 (14)	A-6 (21)	A-6 (16)	A-6 (13)	
Classification	ASTM D 24	487	CL	CL	CL	CL	
AASHTO T 190	R – Value		16	11	<5	8	
AASHTO T 288	Min. Resistivi	ty, ohm x cm	-		418		
AASHTO T 289	рH				6.8	_	
AASHTO T 290	Sulfate Ion Co	ntent, %/ppm			0.844 / 8440		
AASHTO T 291	Chloride Ion C	ontent, %/ppm			0.0004 / 4		

Distribution:

Num. / Project File

Laboratory

Darrell Harding

Pavements

Danielle Germani

Pavements

Steve Deppmeier

Materials

Mike Peabody

Sulfate & chloride content testing was performed by FHWA consultant, Colorado Analytical Laboratories.

Reported By:

Darrell Harding **Laboratory Manager**

Form FHWA 1702 Rev. 02/10

Contra Feteral and Sourcedited Laboratory

Report of Asphalt Concrete Mixture Tests

Project: North Dakota PRA THRO 11/5) South Loon Boad (Fast Biver Boad)

Suhmitted By: Danielle Germani

Page 3 of 5

FIGURE: NOTITI Dakola PRA THRO TI(5) South Loop Road (East River Road)	OIA PRA I FIRI	2 (6) 1 0	south Loop Ko	ao (East K	IVEL Koac	submitted By: Danielle Germani	ini <u>Date Reported:</u> 1/20/2011	1/20/2011
Lab Number						10-3852-AGG		
Hole Number						B1, B2, B3, B4, B5, B6, P1, P2		
Sample Location		Eas	East River Road @ Milepost / O	Milepost	/ Offset	25.47Rt, 26.17Lt 26.27Rt, 27.07Lt 27.57Rt, 27.97Lt		
Item: Class:	Sieve Size	ezi	Gr., Spec.	T.V.	<u>(a)</u>			
	3/4" 1	19.0 mm				100		
AASHTO T 30	1/2" 1;	12.5 mm				26		
	3/8" 9	9.5 mm				68		
	#4 4	4.75 mm				73		
	#8 2	2.36 mm				12		
	9 02#	600 µm				26		
	#40 4	425 µm				22		
	2 05#	300 µm				18		
in the second of	#200	75 µm				8.2		
AASHTO T 308 Asphalt Content, % by Total Mix Weight	sphalt Content,	% by Tota	al Mix Weight			7.82		
	Density, pcf			AASHTO) T 166			
	Absorption, %	%		AASHTO	⊢			
Field Cores	Density, pcf			AASHTO T) T 331			
	Compaction, %	% '						
	Thickness, inches	nches		ASTM D 3549	3549			
	Moisture	Con	Conditioned Strength, psi	ith, psi				
-soo	Induced	2	Dry Strength, psi					
Asphalt	Damage		Tensile Strength Ratio, %	atio, %				
Mixture	AASHTO T 283		Air Voids, %					
Received	Maximum Density, pcf	ensity, po	of	AASHTO	T 209			
From	Hveem	Stab	Stabilometer value					
Field	Specimen		Density, pcf					
	AASHTO T 24		Air Voids, %					

Distribution: Project Engineer Construction Laboratory Materials

Num / Project File Danielle Germani Steve Deppmeier Darrell Harding Mike Peabody

The sample contained both fabric and chip seal. Remarks: This material is existing HACP.

"(D)" indicates the allowable deviation from the target value.

Reported By:

Darrell Harding Laboratory Manager

Form FHWA 1713 Rev 08/10

Central Federal Lands Highway Division Laboratory An AASHTO and ISO Accredited Laboratory

Report of Soil or Aggregate Tests

Page 4 of 5

Project: North Dakota PRA THRO 11(5) South Loop Road

Submitted By: Danielle Germani

Date Reported: 1/20/2011

1600 to	Lab Number		Combined	Combined	Combined	Combined	W)
Sample Number	Hole Number						
ivumber	% RAP / %	Base	0 / 100	25 / 75	50 / 50	75 / 25	
	Milepost o	r Location					
Sample	Offset						
Location	Depth						
Province Control of Co	3"	75.0 mm					(Masking)
	1 1/2"	37.5 mm		_	***		
	18	25.0 mm	·····				
	3/4"	19.0 mm	100	100	100	100	
AASHTO	1/2"	12.5 mm	96	96	97	97	
T 11, T 27	3/8"	9.5 mm	91	91	90	90	***************************************
& T 88	#4	4.75 mm	76	75	75	74	
	#8	2.36 mm	64	61	58	54	
Washed	#10	2.00 mm					
Sieve	#16	1.18 mm		-			
Analysis	#30	600 µm	40	37	33	30	
% Passing	#40	425 µm	35	32	29	25	
	#50	300 µm	31	28	25	21	
	#100	150 µm					
	#200	75 µm	18	16	13	11	
		20 µm					
		2 μm					
		1 µm					
AASHTO T 255	Moisture, %						
AASHTO	Liquid Limit						
T 89 & T 90	Plasticity Index						
Soil	AASHTO M 145						
Classification	ASTM D 2487		,,				
AASHTO T 190	R – Value		58	60	76	77	
AASHTO T 288	Min. Resistivity, ohm x cm						
AASHTO T 289	pН						
AASHTO	Optimum Moi						
Method	Maximum Dry	Density, pcf					

Distribution:

Num. / Project File

Laboratory

Darrell Harding

Pavements

Danielle Germani

Pavements

Steve Deppmeier

Materials

Mike Peabody

Remarks: This material is a blend of existing pavement and aggregate base.

Reported By:

Darrell Harding Laboratory Manager

Form FHWA 1702 Rev. 02/10

Central Federal Lands Highway Division Laboratory An AASHTO and ISO Accredited Laboratory

Federal Highway **Administration**

Report of Soil or Aggregate Tests

Page 1 of 1

Project: North Dakota PRA THRO 11(5) South Loop Road (Buck Hill)

Submitted By: Danielle Germani

Date Reported: 1/20/2011

	Lab Number		10-3845-RV	10-3847-AGG	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	
Sample	Hole Number Field Number		B-1	B-1 & B-2		
Number			B-1 Buck Hill	B-1 Buck Hill		
	T IGIA NAM	DGI	D-1 Bdox 1111	D-1 DUCKTIIII		<u> </u>
Cample	Buck Hill - I	Milepost	0.4	0.4		
Sample Location	Material Ty	/ре	Subgrade	Base		
LOGGROTI	Depth		1-5'	0-12", 3-20"		
	3"	75.0 mm				
	1 1/2"	37.5 mm				
	1"	25.0 mm				
	3/4"	19.0 mm		100		
AASHTO	1/2"	12.5 mm		95		
T 11, T 27	3/8"	9.5 mm		89		
& T 88	#4	4.75 mm	100	70		
	#8	2.36 mm		56		
Washed	#10	2.00 mm	99	53		
Sieve	#16	1.18 mm	99			
Analysis	#30	600 µm		38		
% Passing	#40	425 µm	98	34		
	#50	300 µm		32		
	#100	150 µm	96			
	#200	75 µm	93	25		
		20 μm				
		2 µm				
		1 µm				
AASHTO T 255	Moisture, 9	3	30.1	24.1		
AASHTO	Liquid Limit		47	32		
T 89 & T 90	Plasticity Index		29	9		
Soil	AASHTO M 145		A-7-6 (28)	A-2-4 (0)		
Classification	ASTM D 2487		CL	SC		
AASHTO T 190	R – Value		<5			
AASHTO T 288	Min. Resistivity, ohm x cm		340			-
AASHTO T 289	pH		7.3			
AASHTO T 290	Sulfate Ion Co	ntent, %/ppm	0.403 / 4030			
AASHTO T 291	Chloride Ion C	ontent, %/ppm	0.0004 / 4			

Distribution:

Num. / Project File

Laboratory

Darrell Harding

Pavements

Danielle Germani

Pavements

Steve Deppmeier

Materials

Mike Peabody

Sulfate & chloride content testing was performed by FHWA consultant, Colorado Analytical Laboratories. Reported By:

Darrell Harding **Laboratory Manager**

Form FHWA 1702 Rev. 02/10

APPENDIX D

PHOTOGRAPHS (SOUTH LOOP ROAD)

MP 26.1 Lt. South Loop Road, B-2, Looking south

MP 26.1 Lt. South Loop Road, B-2, Base Material

MP 26.1 Lt. South Loop Road, B-2, Pavement thickness

MP 26.2 Rt. South Loop Road, B-3, looking south

MP 26.2 Rt. South Loop Road, B-3, Thermal cracking

MP 26.2 Rt. South Loop Road, B-3, Base material

MP 26.2 Rt. South Loop Road, B-3, Base material

MP 27.0 Lt. South Loop Road, B-4, Looking south

MP 27.0 Lt. South Loop Road, B-4, Base material

MP 27.5 Rt. South Loop Road, B-5, Looking south

MP 27.5 Rt. South Loop Road, B-5, Base material

MP 27.5 Rt. South Loop Road, B-5, Pavement thickness

Jones Creek Pullout, P-2

Jones Creek Pullout, P-2, Pavement thickness

MP 27.9 Lt. South Loop Road, B-6, Looking south

MP 27.9 Lt. South Loop Road, B-6, Base material

MP 27.9 Lt. South Loop Road, B-6, Subgrade material

MP 28.6 Rt. South Loop Road, B-7, Looking south

MP 28.6 Rt. South Loop Road, B-7, Base material

MP 28.6 Rt. South Loop Road, B-7, Subgrade material

MP 28.6 Rt. South Loop Road, B-7, Pavement thickness

MP 6.0 Rt. South Loop Road, B-8, Looking south

MP 6.0 Rt. South Loop Road, B-8, Base material

MP 6.0 Rt. South Loop Road, B-8, Pavement thickness

APPENDIX E

PHOTOGRAPHS (BUCK HILL SPUR)

MP 0.1 Buck Hill Spur, Caved in culvert

MP 0.4 Buck Hill Spur, Culvert

MP 0.4 Rt. Buck Hill Spur, B-1, Looking south at dip creating ponding

MP 0.4 Rt. Buck Hill Spur, B-1, Looking south at runoff creating ponding below

MP 0.4 Rt. Buck Hill Spur, B-1, Subgrade material

MP 0.5 Rt. Buck Hill Spur, B-2, The shovel shows the rippling in the roadway

MP 0.5 Rt. Buck Hill Spur, B-2, scoria base material

MP 0.5 Rt. Buck Hill Spur, B-2, Subgrade material

APPENDIX F

VISUAL CLASSIFICATION SUMMARY

PAVEMENT & BASE COURSE THICKNESSES Buck Hill Spur

APPENDIX G

PAVEMENT DESIGN CALCULATIONS

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Flexible Structural Design Module

Bucks Hill

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	56,095
Initial Serviceability	4.2
Terminal Serviceability	2
Reliability Level	75 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	3,000 ps
Stage Construction	1
	*
Calculated Design Structural Number	2.72 in

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	450
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

1.			Average Initial	Annual %	Accumulated
r r	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
· Class	\underline{ADT}	Growth	Truck)	Factor	<u>Period</u>
1 2	92	1	0.0004	0	662
14 4	1	1	0.88	0	15,838
5. 5	6	1	0.2	0	21,597
7	1	1	1	0	17,998
Total	100	-	-	-	56,095

Growth Simple

Total Calculated Cumulative ESALs 56,095

ŢŢ

Specified Layer Design

ì		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	(<u>Ai</u>)	(Mi)	(Di)(in)	<u>(ft)</u>	SN (in)
ĺ	HACP	0.44	1	3.5	-	1.54
1 2	Aggregate base course & stabilizati	0.2	1	2	-	0.40
- 3	FDR - Stabilization	0.2	1	4	-	0.80
` Total		-	-	9,50		2.74

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Flexible Structural Design Module

Option 🧺 |

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	56,095
Initial Serviceability	4.2
Terminal Serviceability	2
Reliability Level	75 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	3,000 psi
Stage Construction	1
Calculated Design Structural Number	2.72 in

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	450
Number of Lanes in Design Direction	1
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

1,3			Average Initial	Annual %	Accumulated
1:1	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	\underline{ADT}	<u>Growth</u>	Truck)	<u>Factor</u>	Period
Class CA 2	92	1	0.0004	0	662
Rt 4	1	1	0.88	O	15,838
St. 5	6	1	0.2	0	21,597
7	1	1	1	0	17,998
CTotal	100	<u></u>			56,095

Growth Simple

Total Calculated Cumulative ESALs 56,095

Specified Layer Design

it.		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	(Ai)	(Mi)	(Di)(in)	<u>(ft)</u>	SN (in)
1	HACP	0.44	1	3.5	(=)	1.54
V: 2	FDR - Stabilization	0.17	1	7	5 m 2	1.19
Total	-	-	*	10.50	(=)	2.73

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Flexible Structural Design Module

Option 1/2

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	56,095
Initial Serviceability	4.2
Terminal Serviceability	2
Reliability Level	75 %
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus	3,000 psi
Stage Construction	1
Calculated Design Structural Number	2.72 in

Rigorous ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	450
Number of Lanes in Design Direction	Ī
Percent of All Trucks in Design Lane	100 %
Percent Trucks in Design Direction	50 %

18-			Average Initial	Annual %	Accumulated
Iri;	Percent	Annual	Truck Factor	Growth in	18-kip ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
Class	\underline{ADT}	Growth	Truck)	<u>Factor</u>	Period
○ 2	92	1	0.0004	0	662
i 4	1	1	0.88	0	15,838
5	6	1	0.2	0	21,597
7	1	1	1	0	17,998
Total	100	*	æ:	~	56,095

Total Calculated Cumulative ESALs 56,095

Growth

Specified Layer Design

Simple

l'u		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	(Ai)	(Mi)	(Di)(in)	<u>(ft)</u>	SN (in)
1	HACP	0.44	1	4	201-00 0 2	1.76
∀ € 2	FDR - Pulverize	0.14	1	7	10 4	0.98
Total	-	-	-	11.00	-	2.74

APPENDIX H

PRICE ESTIMATIONS AND ASSUMPTIONS

Theodore Roosevelt-South Loop Road

et nes	ı mile width	.50 x 0.1111	80 × 20.50	80 x 20.50	11	111 = 12,025 111 = 12.025	H	×	80 × 20.50	X 0 per day, minimum o	000 = \$327,649 per mile Proposed length	000 = \$324,284 per mile Proposed length	\$328,247 per mile Proposed length
20.50 feet 6.23 inches	inches convert to feet	7 5280 x 20.50	4 × 0.0833 × 5280	3.5 × 0.0833 × 5280 1%	× 20.50 ×	5280 x 20.50 x 0.1111 5280 x 20.50 x 0.1111	× 20.50 ×	×	7 × 0.0833 × 5280	×	3.5" HACP + 7" Fly Ash (2 + (3 + (11 + (12 + (14 = 229,198+ 4,564 + 60,127 + 30,281 + 3,000 =	3.5" HACP + 7" Lime (2 + (3 + (11 + (13 + (14 = 229,198+ 4,584 + 60,127 + 26,917 + 3,000 =	4" HACP + 7" FDR - Pulverizing (1 + (2 + (3 + (10 = 36,076 + 261,941 + 5,329 + 24,467 =
width depth	inch												

Theodore Roosevelt-Buck Hill Spur

		E	2	<u>ධ</u>	4)	(5	<u>و</u> ر	ے و	2.0	(10	5	(12	(13				
		62,383	218,341	311,916	244,372	5,376	285,100	8,272 305,800	7,168	74,793	32,286	28,699	3,000				
		⇔ ‼	u)	6? Ⅱ	€ ?) Il	€9	69 6	∌e	- 69	s>	69 ∏	ii					
	\$ / ton	40.00	40.00	40.00	100	220	100	270	520	5.00	135	200					
		×	€ 9 ×	€9 ×	6 9 ×	69 ×	69 €	/)	÷ +>	×	×	×					
	tons	1559.58	5458.53	6,7677	2443.716	24,43716	2851.002	28.51002	32.58288		0.05 = 239.06	0.03 = 143.49		\$338,598.79	\$335,980.05	\$410,014.56	\$402,476.91
	(A)	li.	IÈ	II	li		Ħ	ı	l			×		н	П	II	II
	lbs to tons	2000	2000	2000	2000		2000	0000			2000	2000		\$463,834	\$460,247	\$561,664	\$551,338
	벨	1	-	1	+		-	-			1	+		×	*	×	×
	unit weight	139	139	139	145.2		145.2	145.2	<u> </u>	14,959	142.1	142.1		0.73	0.73	0.73	0.73
		×	×	×	*		×	>	<	IJ	×	×		Proposed length	Proposed length	Proposed length	Proposed length
	width	25.50	25.50	25.50	25.50		25.50	25.50	2007	0.1111	25.50	25.50	f3 days	\$463,834 per mile	\$460,247 per mile	\$561,664 per mile	\$551,338 per mile
		×	×	×	×		×	>	<	×	×	×	inimum o	\$463,8	\$460,2	\$561,6	\$551,3
feet inches	feet in mile	5,280.00	5,280.00	5,280.00	5280		5280	7380	0030	25.50	5280	5280	assume \$1000 per day, minimum of 3 days	3.5" HACP + 2" Aggregate Base + 4" Fly Ash (1 + (6 + (7 + (10 + (11 + (13 = 62,383 + 285,100 + 6,272 + 74,793 + 32,286 + 3,000	3.5" HACP + 2" Aggregate Base + 4" Lime (1 + (6 + (7 + (10 + (12 + (13 = 62,383 + 285,100 + 6,272 + 74,793 + 28,699 + 3,000	ase.	o o
	썲	×	× Ω	×	×		×	>		×	×	×	a	late Bas +(13 = 72 + 74	ete Bas + (13 = 72 + 74	gate Br .376	jate Bas 168
3.00	inches convert to feet	x 0.083333 x	x 0.083333 x	x 0.083333 x	× 0.0833		x 0.0833	0.0833		5280	x 0,0833		x 0.0633	3.5" HACP + 2" Aggregate Base + 4" (1 + (6 + (7 + (10 + (11 +(13 = 62,383 + 285,100 + 6,272 + 74,793 +	3.5" HACP + 2" Aggregate Base + 4" (1 + (6 + (7 + (10 + (12 + (13 = 62,383 + 285,100 + 6,272 + 74,793 +	3.0" HACP + 10" Aggregate Base (3 + (4 + (5 = 311,916 + 244,372 + 5,376	4.0" HACP + 7" Aggregate Base (2 + (8 + (9 = 218,341 + 325,829 + 7,168
width depth	inches co	8	7	10	ო	7%	ا ا	%-	- %	4	æ	ဖ		3.5" HACP (1 + (6 + (7 62,383 + 2	3.5" HACP (1 + (6 + (7 62,383 + 2	3.0" HACP + 1 (3 + (4 + (5 = 311,916 + 244	4.0" HACP + 7" (2 + (8 + (9 = 218,341 + 325,
Average HACP Average HACP	Option Items	2" Aggregate Base Course	7" Aggregate Base Course	10" Aggregate Base Course	3" HACP	Lime	3.5" HACP	Ume 4" HACB	Lime	4" Stabilization	5% Fly Ash	3% Lime	Traffic Control	3R Option		4R Option	

APPENDIX I

PRELIMINARY PAVEMENTS MEMO

Memorandum

Subject:

ND PRA THRO-11(5) SOUTH LOOP ROAD

Date: 2/2/11

From:

Steve Deppmeier, Pavements Engineer

In Reply Refer To:

HFCO-16

To:

Mike Will, Project Manager Angela Johnson, Designer

The project consists of South Loop Road and Buck Hill Spur in Theodore Roosevelt National Park in Billings County, North Dakota. The project covers 10.67 of South Loop Road, beginning at the Medora park entrance and continuing north. Buck Hill Spur is a 0.73 mile road leading to a scenic overlook.

South Loop Road is also known as Scenic Loop Road (Route 11) in the Road Inventory Program (RIP) data and is labeled as East River Road on most maps. For this memo South Loop Road will be used. Buck Hill Spur is also known as Buck Hill on most maps.

Design Assumptions:

- The Average Daily Traffic (ADT) was provided in the National Park Service (NPS) Traffic Count at Scenic Loop Drive (Medora).
- A 1% ADT growth factor was used to project the traffic data out to 2030.
- The ADT was calculated only using the peak months of May through September.

Scenic Loop Road

Scenic Loop Road project will under go rehabilitation. The traffic loading is 56,000 ESALs from an ADT of 450. The existing pavement depths ranged from 4.5 inches to 9 inches with an average of 6.2 inches. The required design Structural Number (SN) on the subgrade material is 2.72. Below shows two options with Option 1 as the recommended option.

Option 1: RECOMMENDED 3.5 inches HACP 7 inches FDR - Stabilization

SN = 2.73 Cost Estimate (5% Fly Ash) = \$327,649 per mile, paving cost only Cost Estimate (3% Lime) = \$324,284 per mile, paving cost only Option 2:

4 inches HACP
7 inches FDR - Pulverize
SN = 2.74
Cost Estimate = \$328,247 per mile, paving cost only

The recommended pavement rehabilitation is 7-inches of Full Depth Reclamation (FDR) - stabilization with 5% Fly Ash or 3% Lime and 3.5-inches of new Hot Asphalt Concrete Pavement (HACP) overlay. This recommendation is based on traffic information, potential loadings, existing pavement, and soil conditions. This method will provide more stabilization then just pulverization for the clayey soils that are found in this area. This method also provides better constructability and results in a lower grade. The recommendation and cost estimate if for mainline only and does not include paved ditches. Pavement depth may be less for pullouts and parking areas. Provide either 5% Fly Ash or 3% Lime as the stabilizing agent.

It is important to note that the borings were drilled between a quarter and half a mile apart, as a result discrepancies between the report and actual field thickness could occur.

Buck Hill Spur

Buck Hill Spur is approximately 0.73 miles long and will undergo rehabilitation. The traffic loading and ADT is the same as for Scenic Loop Road to account for buses that want to drive up to the overlook. Pavement depths ranged from 0 inches in areas where the road has been stripped away to 3 inches.

Option 1: RECOMMENDED

3.5 inches HACP

2 inches Aggregate Base Course & Stabilization

4 inches FDR-Stabilization

SN = 2.74

Cost Estimate (5% Fly Ash) = \$463,834 per mile, paving cost only

Cost Estimate (3% Lime) = \$460,247 per mile, paving cost only

The recommended pavement rehabilitation is 4-inches of pulverized material, 2 inches of aggregate base course, and 3.5-inches of new HACP overlay. This recommendation is based on traffic information, potential loadings, public access, existing pavement, subgrade, and soil conditions. The existing base material is scoria base with an R-Value of less than 5. It is recommended that 2-inches of base be brought in and placed along the roadway. Provide either 5% Fly Ash or 3% Lime as the stabilizing agent.

A large dip in the road is causing drainage issues and will need to be filled with base material. It will take approximately 7,800 ft³ of base material to raise the dip. It is also recommended that a culvert be installed in that area. This base quantity does take into account the amount of required base material need to cover the culvert. The cost estimate does not include the cost of this additional base material and culvert. Hydraulics will need to look into the issue further.

Pavement Materials

- 30305-0000 Pulverizing 7-inch depth.
- 30310-0000 Fly Ash, Estimate at 142.1 lb/ft³.
- 30311-0000 Lime, Estimate at 142.1 lb/ft³.
- 30802-2000 Roadway Aggregate, Method 2. Estimate at 139 lb/ ft³. Place 2-inches of base material at Buck Hill Spur.
- 40101-5600 Superpave Pavement, ½-inch or ¾-inch nominal maximum size aggregate, 0.3 to <3 million ESALs. Estimate at 145 lb/ft³. Asphalt cement will be PG 58-34. Type IV Roughness to be specified.
- 40105-3000 Antistrip will be Type III (Hydrated Lime at 1%).
- 40920-1000 Fog Seal, use an emulsion CSS-1, CSS-1h, SS-1, or SS-1h estimate at 0.10 gal/yd²
- 41101-3000 Prime Coat, applied to the FDR-Pulverized material prior to paving. Use and emulsion CSS-1, CSS-1h, SS-1, or SS-1h estimate at 0.33 gal/yd².
- 41106-0000 Item for blotter control should be included at 14.75 lb/ft².
- 41201-0000 Tack Coat, HACP shall be placed in two lifts with a tack coat in between lifts. Use an emulsion CSS-1, CSS-1h, SS-1, or SS-1h, estimate at 0.10 gal/yd².

CC:

Chuck Luedders, Pavements FDL Steve Deppmeier, Pavements Engineer Mike Peabody, Materials Engineer

Attachment:

DARWin Pavement Calculations Log Summary Cost Estimate